skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sun, Mouyuan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Tidal disruption events (TDEs) could be an important growth channel for massive black holes in dwarf galaxies. Theoretical work suggests that the observed active galactic nuclei (AGNs) in dwarf galaxies are predominantly TDE-powered. To assess this claim, we perform variability analyses on the dwarf-hosted AGNs detected in the 7 Ms Chandra Deep Field-South survey, with observations spanning ≈16 yr. Based on the spectral energy distribution modeling withx-cigale, we select AGNs hosted by dwarf galaxies (stellar mass below 1010M). We focus on X-ray sources with full-band detections, leading to a sample of 78 AGNs (0.122 ≤z≤ 3.515). We fit the X-ray light curves with a canonical TDE model oft−5/3and a constant model. If the former outperforms the latter in fitting quality for a source, we consider the source as a potential TDE. We identify five potential TDEs, constituting a small fraction of our sample. Using true- and false-positive rates obtained from fitting models to simulated light curves, we perform Bayesian analysis to obtain the posterior of the TDE fraction for our sample. The posterior peaks close to zero (2.56%), and we obtain a 2σupper limit of 9.80%. Therefore, our result indicates that the observed AGNs in dwarf galaxies are not predominantly powered by TDEs. 
    more » « less
    Free, publicly-accessible full text available January 30, 2026
  2. Abstract Active dwarf galaxies are important because they contribute to the evolution of dwarf galaxies and can reveal their hosted massive black holes. However, the sample size of such sources beyond the local universe is still highly limited. In this work, we search for active dwarf galaxies in the recently completed XMM-Spitzer Extragalactic Representative Volume Survey (XMM-SERVS). XMM-SERVS is currently the largest medium-depth X-ray survey covering 13 deg2in three extragalactic fields, which all have well-characterized multiwavelength information. After considering several factors that may lead to misidentifications, we identify 73 active dwarf galaxies atz< 1, which constitutes the currently largest X-ray-selected sample beyond the local universe. Our sources are generally less obscured than predictions based on the massive-AGN (active galactic nucleus) X-ray luminosity function and have a low radio-excess fraction. We find that our sources reside in environments similar to those of inactive dwarf galaxies. We further quantify the accretion distribution of the dwarf-galaxy population after considering various selection effects and find that it decreases with X-ray luminosity, but redshift evolution cannot be statistically confirmed. Depending on how we define an AGN, the active fraction may or may not show a strong dependence on stellar mass. Their Eddington ratios and X-ray bolometric corrections significantly deviate from the expected relation, which is likely caused by several large underlying systematic biases when estimating the relevant parameters for dwarf galaxies. Throughout this work, we also highlight problems in reliably measuring photometric redshifts and overcoming strong selection effects for distant active dwarf galaxies. 
    more » « less
  3. Abstract We present accretion-disk structure measurements from UV–optical reverberation mapping (RM) observations of a sample of eight quasars at 0.24 < z < 0.85. Ultraviolet photometry comes from two cycles of Hubble Space Telescope monitoring, accompanied by multiband optical monitoring by the Las Cumbres Observatory network and Liverpool Telescopes. The targets were selected from the Sloan Digital Sky Survey Reverberation Mapping project sample with reliable black hole mass measurements from H β RM results. We measure significant lags between the UV and various optical griz bands using JAVELIN and CREAM methods. We use the significant lag results from both methods to fit the accretion-disk structure using a Markov Chain Monte Carlo approach. We study the accretion disk as a function of disk normalization, temperature scaling, and efficiency. We find direct evidence for diffuse nebular emission from Balmer and Fe ii lines over discrete wavelength ranges. We also find that our best-fit disk color profile is broadly consistent with the Shakura & Sunyaev disk model. We compare our UV–optical lags to the disk sizes inferred from optical–optical lags of the same quasars and find that our results are consistent with these quasars being drawn from a limited high-lag subset of the broader population. Our results are therefore broadly consistent with models that suggest longer disk lags in a subset of quasars, for example, due to a nonzero size of the ionizing corona and/or magnetic heating contributing to the disk response. 
    more » « less
  4. null (Ed.)
  5. null (Ed.)
  6. null (Ed.)
  7. null (Ed.)
  8. null (Ed.)